Conditional parallel processing in fully-connected neural networks
Abstract:
The present disclosure is directed to parallelization of artificial neural network processing by conditionally synchronizing, among multiple computer processors, either the input or output of individual operations, and by conditionally using either rows or columns of certain matrices used in the operations. The conditional processing may depend upon the relative sizes of the input and output of the specific operations to be performed. For example, if a current layer matrix of values is larger than a next layer matrix of values to be computed, then rows of a weight matrix may be used by the computer processors to compute the next layer matrix. If the current layer matrix is smaller than the next layer matrix, then columns of the weight matrix may be used by the computer processors to compute the next layer matrix.
Public/Granted literature
Information query
Patent Agency Ranking
0/0