Font recognition by dynamically weighting multiple deep learning neural networks
Abstract:
The present disclosure relates to a font recognition system that employs a multi-task learning framework and training to improve font classification and remove negative side effects caused by intra-class variances of glyph content. For example, in one or more embodiments, the font recognition system trains a hybrid font recognition neural network that includes two or more font recognition neural networks and a weight prediction neural network. The hybrid font recognition neural network determines and generates classification weights based on which font recognition neural network within the hybrid font recognition neural network is best suited to classify the font in an input text image. By employing a hybrid trained font classification neural network, the font recognition system can improve overall font recognition as well as remove the negative side effects from diverse glyph content.
Information query
Patent Agency Ranking
0/0