Dimensionality reduction of baum-welch statistics for speaker recognition
Abstract:
In a speaker recognition apparatus, audio features are extracted from a received recognition speech signal, and first order Gaussian mixture model (GMM) statistics are generated therefrom based on a universal background model that includes a plurality of speaker models. The first order GMM statistics are normalized with regard to a duration of the received speech signal. The deep neural network reduces a dimensionality of the normalized first order GMM statistics, and outputs a voiceprint corresponding to the recognition speech signal.
Information query
Patent Agency Ranking
0/0