Compact models for object recognition
Abstract:
Methods, systems, and devices for object recognition are described. Generally, the described techniques provide for a compact and efficient convolutional neural network (CNN) model for facial recognition. The proposed techniques relate to a light model with a set of layers of convolution and one fully connected layer for feature representation. A new building block of for each convolution layer is proposed. A maximum feature map (MFM) operation may be employed to reduce channels (e.g., by combining two or more channels via maximum feature selection within the channels). Depth-wise separable convolution may be employed for computation reduction (e.g., reduction of convolution computation). Batch normalization may be applied to normalize the output of the convolution layers and the fully connected layer (e.g., to prevent overfitting). The described techniques provide a compact and efficient CNN model which can be used for efficient and effective face recognition.
Public/Granted literature
Information query
Patent Agency Ranking
0/0