- 专利标题: Neural network classifier
-
申请号: US15815309申请日: 2017-11-16
-
公开(公告)号: US11049011B2公开(公告)日: 2021-06-29
- 发明人: Jayadeva
- 申请人: INDIAN INSTITUTE OF TECHNOLOGY DELHI
- 申请人地址: IN New Delhi
- 专利权人: INDIAN INSTITUTE OF TECHNOLOGY DELHI
- 当前专利权人: INDIAN INSTITUTE OF TECHNOLOGY DELHI
- 当前专利权人地址: IN New Delhi
- 代理机构: Lee & Hayes, P.C.
- 优先权: IN201611039147 20161116
- 主分类号: G06N3/08
- IPC分类号: G06N3/08 ; G06N3/04 ; G06F17/12
摘要:
Approaches for classifying training samples with minimal error in a neural network using a low complexity neural network classifier, are described. In one example, for the neural network, an upper bound on the Vapnik-Chervonenkis (VC) dimension is determined. Thereafter, an empirical error function corresponding to the neural network is determined. A modified error function based on the upper bound on the VC dimension and the empirical error function is generated, and used for training the neural network.
公开/授权文献
- US20180144246A1 Neural Network Classifier 公开/授权日:2018-05-24
信息查询