Using gradients to detect backdoors in neural networks
摘要:
Mechanisms are provided for evaluating a trained machine learning model to determine whether the machine learning model has a backdoor trigger. The mechanisms process a test dataset to generate output classifications for the test dataset, and generate, for the test dataset, gradient data indicating a degree of change of elements within the test dataset based on the output generated by processing the test dataset. The mechanisms analyze the gradient data to identify a pattern of elements within the test dataset indicative of a backdoor trigger. The mechanisms generate, in response to the analysis identifying the pattern of elements indicative of a backdoor trigger, an output indicating the existence of the backdoor trigger in the trained machine learning model.
公开/授权文献
信息查询
0/0