Utilizing a neural network having a two-stream encoder architecture to generate composite digital images
Abstract:
The present disclosure relates to utilizing a neural network having a two-stream encoder architecture to accurately generate composite digital images that realistically portray a foreground object from one digital image against a scene from another digital image. For example, the disclosed systems can utilize a foreground encoder of the neural network to identify features from a foreground image and further utilize a background encoder to identify features from a background image. The disclosed systems can then utilize a decoder to fuse the features together and generate a composite digital image. The disclosed systems can train the neural network utilizing an easy-to-hard data augmentation scheme implemented via self-teaching. The disclosed systems can further incorporate the neural network within an end-to-end framework for automation of the image composition process.
Information query
Patent Agency Ranking
0/0