Real-time network application visibility classifier of encrypted traffic based on feature engineering
Abstract:
Systems and methods are provided for a light-weight model for traffic classification within a network fabric. A classification model is deployed onto an edge switch within a network fabric, the model enabling traffic classification using a set of statistical features derived from packet length information extracted from the IP header for a plurality of data packets within a received traffic flow. The statistical features comprise a number of unique packet lengths, a minimum packet length, a maximum packet length, a mean packet length, a standard deviation of the packet length, a maximum run length, a minimum run length, a mean run length, and a standard deviation of run length. Based on the calculated values for the statistical features, the edge switch determines a traffic class for the received traffic flow and tags the traffic flow with an indication of the determined traffic class.
Information query
Patent Agency Ranking
0/0