Machine learning driven data collection of high-frequency network telemetry for failure prediction
Abstract:
In one embodiment, a supervisory service for one or more networks receives telemetry data samples from a plurality of networking devices in the one or more networks. The service trains a failure prediction model to predict failures in the one or more networks, using a training dataset comprising the received telemetry data samples. The service assesses performance of the failure prediction model. The service trains, based on the assessed performance of the failure prediction model, a machine learning-based classification model to determine whether a networking device should send a particular telemetry data sample to the service. The service sends the machine learning-based classifier to one or more of the plurality of networking devices, to control which telemetry data samples the one or more networking devices send to the supervisory service.
Information query
Patent Agency Ranking
0/0