Blended neural network for super-resolution image processing
Abstract:
Embodiments relate to a super-resolution engine that converts a lower resolution input image into a higher resolution output image. The super-resolution engine includes a directional scaler, an enhancement processor, a feature detection processor, a blending logic circuit, and a neural network. The directional scaler generates directionally scaled image data by upscaling the input image. The enhancement processor generates enhanced image data by applying an example-based enhancement, a peaking filter, or some other type of non-neural network image processing scheme to the directionally scaled image data. The feature detection processor determines features indicating properties of portions of the directionally scaled image data. The neural network generates residual values defining differences between a target result of the super-resolution enhancement and the directionally scaled image data. The blending logic circuit blends the enhanced image data with the residual values according to the features.
Public/Granted literature
Information query
Patent Agency Ranking
0/0