Meta-knowledge fine tuning method and platform for multi-task language model
Abstract:
Disclosed is a meta-knowledge fine tuning method and platform for a multi-task language model. The method is to obtain highly transferable shared knowledge, that is, meta-knowledge, on different data sets of tasks of the same category, perform interrelation and mutual reinforcement on the learning processes of the tasks of the same category that correspond to different data sets and are in different domains, so as to improve the fine tuning effect of downstream tasks of the same category on data sets of different domains in the application of the language model, and improve the parameter initialization ability and the generalization ability of a general language model for the tasks of the same category.
Information query
Patent Agency Ranking
0/0