Cluster and image-based feedback system
摘要:
Images are tagged with values in an image data hierarchy that is most subjective at its top level and least subjective at its bottom level, such as a hierarchy including style, type, and features for clothing. A user preference hierarchy is determined from user response to images that are tagged. Tagged images may be generated by processing them with machine learning models trained to determine values for images. Product records including images and other data are analyzed to generate attribute vectors that are encoded to generate product vectors. Products are clustered according to their product vectors. Images of products within a cluster are clustered according to composition and groups of images are selected from image clusters for soliciting feedback regarding user preference for products of a cluster. Feedback is used to train a user preference model to estimate user affinity for a product having a given product vector.
公开/授权文献
信息查询
0/0