Learning a neural network for inference of editable feature trees
Abstract:
The disclosure notably relates to a computer-implemented method for learning a neural network configured for inference, from a discrete geometrical representation of a 3D shape, of an editable feature tree representing the 3D shape. The editable feature tree includes a tree arrangement of geometrical operations applied to leaf geometrical shapes. The method includes obtaining a dataset including discrete geometrical representations each of a respective 3D shape, and obtaining a candidate set of leaf geometrical shapes. The method also includes learning the neural network based on the dataset and on the candidate set. The candidate set includes at least one continuous subset of leaf geometrical shapes. The method forms an improved solution for digitization.
Public/Granted literature
Information query
Patent Agency Ranking
0/0