Attributionally robust training for weakly supervised localization and segmentation
Abstract:
Embodiments are disclosed for training a neural network classifier to learn to more closely align an input image with its attribution map. In particular, in one or more embodiments, the disclosed systems and methods comprise receiving a training image comprising a representation of one or more objects, the training image associated with at least one label for the representation of the one or more objects, generating a perturbed training image based on the training image using a neural network, and training the neural network using the perturbed training image by minimizing a combination of classification loss and attribution loss to learn to align an image with its corresponding attribution map.
Information query
Patent Agency Ranking
0/0