Analytics and machine learning method for estimating petrophysical property values
Abstract:
Property values inside an explored underground subsurface are determined using hybrid analytic and machine learning. A training dataset representing survey data acquired over the explored underground structure is used to obtain labels via an analytic inversion. A deep neural network model generated using the training dataset and the labels is used to predict property values corresponding to the survey data using the DNN model.
Information query
Patent Agency Ranking
0/0