System to correct model drift for natural language understanding
摘要:
A system retrains a natural language understanding (NLU) model by regularly analyzing electronic documents including web publications such as online newspapers, blogs, social media posts, etc. to understand how word and phrase usage is evolving. Generally, the system determines the frequency of words and phrases in the electronic documents and updates an NLU dictionary depending on whether certain words or phrases are being used more frequently or less frequently. This dictionary is then used to retrain the NLU model, which is then applied to predict the meaning of text or speech communicated by a people group. By analyzing electronic documents such as web publications, the system is able to stay up-to-date on the vocabulary of the people group and make correct predictions as the vocabulary changes (e.g., due to natural disaster). In this manner, the safety of the people is improved.
信息查询
0/0