Deep learning FPGA converter
Abstract:
Systems and methods for programming field programmable gate array (FPGA) devices are provided. A trained model for a deep learning process is obtained and converted to design abstraction (DA) code defining logic block circuits for programming an FPGA device. Each of these logic block circuits represents one of a plurality of modules that executes a processing step between different layers of the deep learning process.
Public/Granted literature
Information query
Patent Agency Ranking
0/0