Compression of machine-learned models via entropy penalized weight reparameterization
Abstract:
Example aspects of the present disclosure are directed to systems and methods that learn a compressed representation of a machine-learned model (e.g., neural network) via representation of the model parameters within a reparameterization space during training of the model. In particular, the present disclosure describes an end-to-end model weight compression approach that employs a latent-variable data compression method. The model parameters (e.g., weights and biases) are represented in a “latent” or “reparameterization” space, amounting to a reparameterization. In some implementations, this space can be equipped with a learned probability model, which is used first to impose an entropy penalty on the parameter representation during training, and second to compress the representation using arithmetic coding after training. The proposed approach can thus maximize accuracy and model compressibility jointly, in an end-to-end fashion, with the rate-error trade-off specified by a hyperparameter.
Information query
Patent Agency Ranking
0/0