Hypothesis stitcher for speech recognition of long-form audio
摘要:
A hypothesis stitcher for speech recognition of long-form audio provides superior performance, such as higher accuracy and reduced computational cost. An example disclosed operation includes: segmenting the audio stream into a plurality of audio segments; identifying a plurality of speakers within each of the plurality of audio segments; performing automatic speech recognition (ASR) on each of the plurality of audio segments to generate a plurality of short-segment hypotheses; merging at least a portion of the short-segment hypotheses into a first merged hypothesis set; inserting stitching symbols into the first merged hypothesis set, the stitching symbols including a window change (WC) symbol; and consolidating, with a network-based hypothesis stitcher, the first merged hypothesis set into a first consolidated hypothesis. Multiple variations are disclosed, including alignment-based stitchers and serialized stitchers, which may operate as speaker-specific stitchers or multi-speaker stitchers, and may further support multiple options for differing hypothesis configurations.
信息查询
0/0