- 专利标题: Simulation-real world feedback loop for learning robotic control policies
-
申请号: US17067525申请日: 2020-10-09
-
公开(公告)号: US11584008B1公开(公告)日: 2023-02-21
- 发明人: Brian C. Beckman , Leonardo Ruggiero Bachega , Brandon William Porter , Benjamin Lev Snyder , Michael Vogelsong , Corrinne Yu
- 申请人: Amazon Technologies, Inc.
- 申请人地址: US WA Seattle
- 专利权人: Amazon Technologies, Inc.
- 当前专利权人: Amazon Technologies, Inc.
- 当前专利权人地址: US WA Seattle
- 代理机构: Knobbe, Martens, Olson & Bear, LLP
- 主分类号: B25J9/16
- IPC分类号: B25J9/16
摘要:
A machine learning system builds and uses computer models for controlling robotic performance of a task. Such computer models may be first trained using feedback on computer simulations of the robotic system performing the task, and then refined using feedback on real-world trials of the robot performing the task. Some examples of the computer models can be trained to automatically evaluate robotic task performance and provide the feedback. This feedback can be used by a machine learning system, for example an evolution strategies system or reinforcement learning system, to generate and refine the controller.
信息查询
IPC分类: