Simulation-real world feedback loop for learning robotic control policies
摘要:
A machine learning system builds and uses computer models for controlling robotic performance of a task. Such computer models may be first trained using feedback on computer simulations of the robotic system performing the task, and then refined using feedback on real-world trials of the robot performing the task. Some examples of the computer models can be trained to automatically evaluate robotic task performance and provide the feedback. This feedback can be used by a machine learning system, for example an evolution strategies system or reinforcement learning system, to generate and refine the controller.
信息查询
0/0