System and method for accelerated computation of subsurface representations
Abstract:
A computational stratigraphy model may be run for M mini-steps to simulate changes in a subsurface representation across M mini-steps (from 0-th subsurface representation to M-th subsurface representation), with a mini-step corresponding to a mini-time duration. The subsurface representation after individual steps may be characterized by a set of computational stratigraphy model variables. Some or all of the computational stratigraphy model variables from running of the computational stratigraphy model may be provided as input to a machine learning model. The machine learning model may predict changes to the subsurface representation over a step corresponding to a time duration longer than the mini-time duration and output a predicted subsurface representation. The subsurface representation may be updated based on the predicted subsurface representation outputted by the machine learning model. Running of the computational stratigraphy model and usage of the machine learning model may be iterated until the end of the simulation.
Information query
Patent Agency Ranking
0/0