Method for supervised graph sparsification
Abstract:
A method for employing a supervised graph sparsification (SGS) network to use feedback from subsequent graph learning tasks to guide graph sparsification is presented. The method includes, in a training phase, generating sparsified subgraphs by edge sampling from input training graphs following a learned distribution, feeding the sparsified subgraphs to a prediction/classification component, collecting a predication/classification error, and updating parameters of the learned distribution based on a gradient derived from the predication/classification error. The method further includes, in a testing phase, generating sparsified subgraphs by edge sampling from input testing graphs following the learned distribution, feeding the sparsified subgraphs to the prediction/classification component, and outputting prediction/classification results to a visualization device.
Public/Granted literature
Information query
Patent Agency Ranking
0/0