Machine learning-based inference of granular font properties
Abstract:
A textual properties model is used to infer values for certain font properties of interest given certain text-related data, such as rendered text images. The model may be used for numerous purposes, such as aiding with document layout, identifying font families that are similar to a given font families, and generating new font families with specific desired properties. In some embodiments, the model is trained from a combination of synthetic data that is labeled with values for the font properties of interest, and partially-labeled data from existing “real-world” documents.
Public/Granted literature
Information query
Patent Agency Ranking
0/0