Data augmentation including background modification for robust prediction using neural networks
Abstract:
In various examples, a background of an object may be modified to generate a training image. A segmentation mask may be generated and used to generate an object image that includes image data representing the object. The object image may be integrated into a different background and used for data augmentation in training a neural network. Data augmentation may also be performed using hue adjustment (e.g., of the object image) and/or rendering three-dimensional capture data that corresponds to the object from selected views. Inference scores may be analyzed to select a background for an image to be included in a training dataset. Backgrounds may be selected and training images may be added to a training dataset iteratively during training (e.g., between epochs). Additionally, early or late fusion nay be employed that uses object mask data to improve inferencing performed by a neural network trained using object mask data.
Information query
Patent Agency Ranking
0/0