Grasping of an object by a robot based on grasp strategy determined using machine learning model(s)
Abstract:
Grasping of an object, by an end effector of a robot, based on a grasp strategy that is selected using one or more machine learning models. The grasp strategy utilized for a given grasp is one of a plurality of candidate grasp strategies. Each candidate grasp strategy defines a different group of one or more values that influence performance of a grasp attempt in a manner that is unique relative to the other grasp strategies. For example, value(s) of a grasp strategy can define a grasp direction for grasping the object (e.g., “top”, “side”), a grasp type for grasping the object (e.g., “pinch”, “power”), grasp force applied in grasping the object, pre-grasp manipulations to be performed on the object, and/or post-grasp manipulations to be performed on the object.
Information query
Patent Agency Ranking
0/0