Global path planning method and device for an unmanned vehicle
Abstract:
A global path planning method and device for an unmanned vehicle are disclosed. The method comprises: establishing an object model through a reinforcement learning method, wherein the object model includes: a state of the unmanned vehicle, an environmental state described by a map picture, and an evaluation index of a path planning result; building a deep reinforcement learning neural network based on the object model established, to obtain a stable neural network model; inputting the map picture of the environment state and the state of the unmanned vehicle into the deep reinforcement learning neural network after trained, and generating a motion path of the unmanned vehicle. According to the present disclosure, the environment information in the scene is marked through the map picture, and the map features are extracted through the deep neural network, thereby simplifying the modeling process of the map scene.
Public/Granted literature
Information query
Patent Agency Ranking
0/0