- 专利标题: Systems and methods for large scale semantic indexing with deep level-wise extreme multi-label learning
-
申请号: US16409148申请日: 2019-05-10
-
公开(公告)号: US11748613B2公开(公告)日: 2023-09-05
- 发明人: Dingcheng Li , Jingyuan Zhang , Ping Li
- 申请人: Baidu USA, LLC
- 申请人地址: US CA Sunnyvale
- 专利权人: Baidu USA LLC
- 当前专利权人: Baidu USA LLC
- 当前专利权人地址: US CA Sunnyvale
- 代理机构: NORTH WEBER & BAUGH LLP
- 主分类号: G06F16/93
- IPC分类号: G06F16/93 ; G06F16/35 ; G06F40/205 ; G06F40/30 ; G06N3/08 ; G06N3/04 ; G06N3/044 ; G06N3/045
摘要:
Described herein are embodiments for a deep level-wise extreme multi-label learning and classification (XMLC) framework to facilitate the semantic indexing of literatures. In one or more embodiments, the Deep Level-wise XMLC framework comprises two sequential modules, a deep level-wise multi-label learning module and a hierarchical pointer generation module. In one or more embodiments, the first module decomposes terms of domain ontology into multiple levels and builds a special convolutional neural network for each level with category-dependent dynamic max-pooling and macro F-measure based weights tuning. In one or more embodiments, the second module merges the level-wise outputs into a final summarized semantic indexing. The effectiveness of Deep Level-wise XMLC framework embodiments is demonstrated by comparing it with several state-of-the-art methods of automatic labeling on various datasets.
信息查询