Systems and methods for machine-learned models having convolution and attention
Abstract:
A computer-implemented method for performing computer vision with reduced computational cost and improved accuracy can include obtaining, by a computing system including one or more computing devices, input data comprising an input tensor having one or more dimensions, providing, by the computing system, the input data to a machine-learned convolutional attention network, the machine-learned convolutional attention network including two or more network stages, and, in response to providing the input data to the machine-learned convolutional attention network, receiving, by the computing system, a machine-learning prediction from the machine-learned convolutional attention network. The convolutional attention network can include at least one attention block, wherein the attention block includes a relative attention mechanism, the relative attention mechanism including the sum of a static convolution kernel with an adaptive attention matrix. This provides for improved generalization, capacity, and efficiency of the convolutional attention network relative to some existing models.
Information query
Patent Agency Ranking
0/0