System and method for acoustic activity recognition
Abstract:
Embodiments are provided to recognize features and activities from an audio signal. In one embodiment, a model is generated from sound effect data, which is augmented and projected into an audio domain to form a training dataset efficiently. Sound effect data is data that has been artificially created or from enhanced sounds or sound processes to provide a more accurate baseline of sound data than traditional training data. The sound effect data is augmented to create multiple variants to broaden the sound effect data. The augmented sound effects are projected into various audio domains, such as indoor, outdoor, urban, based on mixing background sounds consistent with these audio domains. The model is installed on any computing device, such as a laptop, smartphone, or other device. Features and activities from an audio signal are then recognized by the computing device based on the model without the need for in-situ training.
Public/Granted literature
Information query
Patent Agency Ranking
0/0