Constructing an ensemble model from randomly selected base learners
摘要:
In an approach for constructing an ensemble model from a set of base learners, a processor performs a plurality of boosting iterations, where: at each boosting iteration of the plurality of boosting iterations, a base learner is selected at random from a set of base learners, according to a sampling probability distribution of the set of base learners, and trained according to a training dataset; and the sampling probability distribution is altered: (i) after selecting a first base learner at a first boosting iteration of the plurality of boosting iterations and (ii) prior to selecting a second base learner at a final boosting iteration of the plurality of boosting iterations. A processor constructs an ensemble model based on base learners selected and trained during the plurality of boosting iterations.
信息查询
0/0