Hydraulic turbine cavitation acoustic signal identification method based on big data machine learning
摘要:
The present invention provides a hydraulic turbine cavitation acoustic signal identification method based on big data machine learning. According to the method, time sequence clustering based on multiple operating conditions under the multi-output condition of the hydraulic turbine set is performed by utilizing an neural network, characteristic quantities of the hydraulic turbine set under a steady condition in a healthy state is screened; a random forest algorithm is introduced to perform feature screening of multiple measuring points under steady-state operation of the hydraulic turbine set, optimal feature measuring points and optimal feature subsets are extracted, finally a health state prediction model is constructed by using gated recurrent units; whether incipient cavitation is present in the equipment is judged. The present invention can effectively identify the occurrence of incipient cavitation in the hydraulic turbine set, reducing unnecessary shutdown of the equipment and prolonging the service life.
信息查询
0/0