Learning to segment via cut-and-paste
Abstract:
Example aspects of the present disclosure are directed to systems and methods that enable weakly-supervised learning of instance segmentation by applying a cut-and-paste technique to training of a generator model included in a generative adversarial network. In particular, the present disclosure provides a weakly-supervised approach to object instance segmentation. In some implementations, starting with known or predicted object bounding boxes, a generator model can learn to generate object masks by playing a game of cut-and-paste in an adversarial learning setup.
Public/Granted literature
Information query
Patent Agency Ranking
0/0