Mirror loss neural networks
Abstract:
This description relates to a neural network that has multiple network parameters and is configured to receive an input observation characterizing a state of an environment and to process the input observation to generate a numeric embedding of the state of the environment. The neural network can be used to control a robotic agent. The network can be trained using a method comprising: obtaining a first observation captured by a first modality; obtaining a second observation that is co-occurring with the first observation and that is captured by a second, different modality; obtaining a third observation captured by the first modality that is not co-occurring with the first observation; determining a gradient of a triplet loss that uses the first observation, the second observation, and the third observation; and updating current values of the network parameters using the gradient of the triplet loss.
Public/Granted literature
Information query
Patent Agency Ranking
0/0