Method and system for assessment of cognitive load from bio-potentials measured using wearable endosomatic device
摘要:
Direct usage of endosomatic EDA has multiple challenges for practical cognitive load assessment. Embodiments of the method and system disclosed provide a solution to the technical challenges in the art by directly using the bio-potential signals to implement endosomatic approach for assessment of cognitive load. The method utilizes a multichannel wearable endosomatic device capable of acquiring and combining multiple bio-potentials, which are biomarkers of cognitive load experienced by a subject performing a cognitive task. Further, extracts information for classification of the cognitive load, from the acquired bio-signals using a set of statistical and a set of spectral features. Furthermore, utilizes a feature selection approach to identify a set of optimum features to train a Machine Learning (ML) based task classifier to classify the cognitive load experienced by a subject into high load task and low load task.
信息查询
0/0