Transferable neural architecture for structured data extraction from web documents
Abstract:
Systems and methods for efficiently identifying and extracting machine-actionable structured data from web documents are provided. The technology employs neural network architectures which process the raw HTML content of a set of seed websites to create transferable models regarding information of interest. These models can then be applied to the raw HTML of other websites to identify similar information of interest. Data can thus be extracted across multiple websites in a functional, structured form that allows it to be used further by a processing system.
Information query
Patent Agency Ranking
0/0