Video recommendation with multi-gate mixture of experts soft actor critic
摘要:
Described herein are embodiments of a reinforcement learning based large-scale multi-objective ranking system. Embodiments of the system may be used for optimizing short-video recommendation on a video sharing platform. Multiple competing ranking objective and implicit selection bias in user feedback are the main challenges in real-world platform. In order to address those challenges, multi-gate mixture of experts (MMoE) and soft actor critic (SAC) are integrated together into a MMoE_SAC system. Experiment results demonstrate that embodiments of the MMoE_SAC system may greatly reduce a loss function compared to systems only based on single strategies.
信息查询
0/0