Clinical case search and generation system and method based on a probabilistic encoder-generator framework
Abstract:
A method for training a probabilistic encoder-decoder having a latent space, the method including: extracting different types of medical data for a group of individuals; creating a data matrix X including the extracted medical data, wherein each row of the data matrix X includes data for one of the group of individuals; creating condition matrix C including features to define a clinical condition, wherein each row of the condition matrix C includes the condition data for one of the group of individuals; and training the encoder and the decoder to learn the latent space by minimizing the reconstruction loss and using a regularization effect to force clinically similar inputs to be close together in the latent space.
Information query
Patent Agency Ranking
0/0