Noise robust representations for keyword spotting systems
Abstract:
Described are techniques for noise-robust and speaker-independent keyword spotting (KWS) in an input audio signal that contains keywords used to activate voice-based human-computer interactions. A KWS system may combine the latent representation generated by a denoising autoencoder (DAE) with audio features extracted from the audio signal using a machine learning approach. The DAE may be a discriminative DAE trained with a quadruplet loss metric learning approach to create a highly-separable latent representation of the audio signal in the audio input feature space. In one aspect, spectral characteristics of the audio signal such as Log-Mel features are combined with the latent representation generated by a quadruplet loss variational DAE (QVDQE) as input to a DNN KWS classifier. The KWS system improves keyword classification accuracy versus using extracted spectral features alone, non-discriminative DAE latent representations alone, or the extracted spectral features combined with the non-discriminative DAE latent representations in a KWS classifier.
Information query
Patent Agency Ranking
0/0