- 专利标题: Stereo depth estimation using deep neural networks
-
申请号: US18160694申请日: 2023-01-27
-
公开(公告)号: US12039436B2公开(公告)日: 2024-07-16
- 发明人: Nikolai Smolyanskiy , Alexey Kamenev , Stan Birchfield
- 申请人: NVIDIA Corporation
- 申请人地址: US CA Santa Clara
- 专利权人: NVIDIA Corporation
- 当前专利权人: NVIDIA Corporation
- 当前专利权人地址: US CA Santa Clara
- 代理机构: Taylor English Duma L.L.P.
- 主分类号: G06T7/50
- IPC分类号: G06T7/50 ; G01S17/86 ; G01S17/89 ; G06F18/22 ; G06N3/02 ; G06N3/045 ; G06N3/048 ; G06N3/063 ; G06N3/084 ; G06N3/088 ; G06T1/20 ; G06T7/593
摘要:
Various examples of the present disclosure include a stereoscopic deep neural network (DNN) that produces accurate and reliable results in real-time. Both LIDAR data (supervised training) and photometric error (unsupervised training) may be used to train the DNN in a semi-supervised manner. The stereoscopic DNN may use an exponential linear unit (ELU) activation function to increase processing speeds, as well as a machine learned argmax function that may include a plurality of convolutional layers having trainable parameters to account for context. The stereoscopic DNN may further include layers having an encoder/decoder architecture, where the encoder portion of the layers may include a combination of three-dimensional convolutional layers followed by two-dimensional convolutional layers.
公开/授权文献
- US20230169321A1 STEREO DEPTH ESTIMATION USING DEEP NEURAL NETWORKS 公开/授权日:2023-06-01
信息查询