发明授权
- 专利标题: Classification and control of detected drilling vibrations using machine learning
-
申请号: US17130189申请日: 2020-12-22
-
公开(公告)号: US12116879B2公开(公告)日: 2024-10-15
- 发明人: Shilin Chen
- 申请人: Halliburton Energy Services, Inc.
- 申请人地址: US TX Houston
- 专利权人: Halliburton Energy Services, Inc.
- 当前专利权人: Halliburton Energy Services, Inc.
- 当前专利权人地址: US TX Houston
- 代理机构: DeLizio, Peacock, Lewin & Guerra, LLP
- 主分类号: E21B44/02
- IPC分类号: E21B44/02 ; E21B47/013 ; E21B47/18 ; G06N20/20
摘要:
A vibrational disfunction machine learning model trainer trains a vibrational disfunction classifier to identify one or more types of vibrational disfunction, or normal drilling, based on measurements of at least one of displacement, velocity, acceleration, angular displacement, angular velocity, and angular acceleration acquired for the drill bit. The vibrational disfunction machine learning model trainer trains the algorithm based on data sets corresponding to characteristic behavior for one or more types of vibrational disfunction and normal drilling. The vibrational disfunction classifier operates in real time, and can operate at the drill bit and communicate vibrational disfunction identification in real time, allowing mitigation of vibrational disfunction through adjustment of drilling parameters.
公开/授权文献
信息查询
IPC分类: