Deep palette prediction
Abstract:
Example embodiments allow for training of encoders (e.g., artificial neural networks (ANNs)) to generate a color palette based on an input image. The color palette can then be used to generate, using the input image, a quantized, reduced color depth image that corresponds to the input image. Differences between a plurality of such input images and corresponding quantized images are used to train the encoder. Encoders trained in this manner are especially suited for generating color palettes used to convert images into different reduced color depth image file formats. Such an encoder also has benefits, with respect to memory use and computational time or cost, relative to the median-cut algorithm or other methods for producing reduced color depth color palettes for images.
Public/Granted literature
Information query
Patent Agency Ranking
0/0