Vehicle intelligence tool for early warning with fault signature
Abstract:
A method for early warning is provided. The method clusters normal historical data of normal cars into groups based on the car subsystem to which they belong. The method extracts (i) features based on group membership and (ii) feature correlations based on correlation graphs formed from the groups. The method trains an Auto-Encoder and Auto Decoder (AE&AD) model based on the features and the feature correlations to reconstruct the normal historical data with minimum reconstruction errors. The method reconstructs, using the trained AE&AD model, historical data of specific car fault types with reconstruction errors, normalizes the reconstruction errors, and selects features of the car faults with a top k large errors as fault signatures. The method reconstructs streaming data of monitored cars using the trained AE&AD model to determine streaming reconstruction errors, comparing the streaming reconstruction errors with the fault signatures to predict and provide alerts for impending known faults.
Public/Granted literature
Information query
Patent Agency Ranking
0/0