Generating synthetic code-switched data for training language models
Abstract:
Techniques for training a language model for code switching content are disclosed. Such techniques include, in some embodiments, generating a dataset, which includes identifying one or more portions within textual content in a first language, the identified one or more portions each including one or more of offensive content or non-offensive content; translating the identified one or more salient portions to a second language; and reintegrating the translated one or more portions into the textual content to generate code-switched textual content. In some cases, the textual content in the first language includes offensive content and non-offensive content, the identified one or more portions include the offensive content, and the translated one or more portions include a translated version of the offensive content. In some embodiments, the code-switched textual content is at least part of a synthetic dataset usable to train a language model, such as a multilingual classification model.
Information query
Patent Agency Ranking
0/0