Textual explanations for abstract syntax trees with scored nodes
Abstract:
Herein is a machine learning (ML) explainability (MLX) approach in which a natural language explanation is generated based on analysis of a parse tree such as for a suspicious database query or web browser JavaScript. In an embodiment, a computer selects, based on a respective relevance score for each non-leaf node in a parse tree of a statement, a relevant subset of non-leaf nodes. The non-leaf nodes are grouped in the parse tree into groups that represent respective portions of the statement. Based on a relevant subset of the groups that contain at least one non-leaf node in the relevant subset of non-leaf nodes, a natural language explanation of why the statement is anomalous is generated.
Public/Granted literature
Information query
Patent Agency Ranking
0/0