发明申请
US20080201139A1 Generic framework for large-margin MCE training in speech recognition 有权
语言识别中大面积MCE培训的通用框架

Generic framework for large-margin MCE training in speech recognition
摘要:
A method and apparatus for training an acoustic model are disclosed. A training corpus is accessed and converted into an initial acoustic model. Scores are calculated for a correct class and competitive classes, respectively, for each token given the initial acoustic model. Also, a sample-adaptive window bandwidth is calculated for each training token. From the calculated scores and the sample-adaptive window bandwidth values, loss values are calculated based on a loss function. The loss function, which may be derived from a Bayesian risk minimization viewpoint, can include a margin value that moves a decision boundary such that token-to-boundary distances for correct tokens that are near the decision boundary are maximized. The margin can either be a fixed margin or can vary monotonically as a function of algorithm iterations. The acoustic model is updated based on the calculated loss values. This process can be repeated until an empirical convergence is met.
信息查询
0/0