发明申请
US20100318482A1 Kernels for Identifying Patterns in Datasets Containing Noise or Transformation Invariances
有权
用于识别包含噪声或转换入数的数据集中的模式的内核
- 专利标题: Kernels for Identifying Patterns in Datasets Containing Noise or Transformation Invariances
- 专利标题(中): 用于识别包含噪声或转换入数的数据集中的模式的内核
-
申请号: US12868658申请日: 2010-08-25
-
公开(公告)号: US20100318482A1公开(公告)日: 2010-12-16
- 发明人: Peter L. Bartlett , André Elisseeff , Bernhard Schoelkopf , Olivier Chapelle
- 申请人: Peter L. Bartlett , André Elisseeff , Bernhard Schoelkopf , Olivier Chapelle
- 申请人地址: US GA Savannah
- 专利权人: HEALTH DISCOVERY CORPORATION
- 当前专利权人: HEALTH DISCOVERY CORPORATION
- 当前专利权人地址: US GA Savannah
- 主分类号: G06F15/18
- IPC分类号: G06F15/18
摘要:
Learning machines, such as support vector machines, are used to analyze datasets to recognize patterns within the dataset using kernels that are selected according to the nature of the data to be analyzed. Where the datasets include an invariance transformation or noise, tangent vectors are defined to identify relationships between the invariance or noise and the training data points. A covariance matrix is formed using the tangent vectors, then used in generation of the kernel, which may be based on a kernel PCA map.
公开/授权文献
信息查询