发明申请
- 专利标题: SUPPORT VECTOR MACHINE ENHANCED MODELS FOR SHORT-TERM WIND FARM GENERATION FORECASTING
- 专利标题(中): 支持向量机增强型短期农田生产预测模型
-
申请号: US14572385申请日: 2014-12-16
-
公开(公告)号: US20150154504A1公开(公告)日: 2015-06-04
- 发明人: Junshan Zhang , Miao He , Lei Yang , Vijay Vittal
- 申请人: Junshan Zhang , Miao He , Lei Yang , Vijay Vittal
- 申请人地址: US AZ Scottsdale
- 专利权人: Arizona Board of Regents on behalf of Arizona State University
- 当前专利权人: Arizona Board of Regents on behalf of Arizona State University
- 当前专利权人地址: US AZ Scottsdale
- 主分类号: G06N7/00
- IPC分类号: G06N7/00 ; F03D7/04
摘要:
Systems and methods for forecasting wind farm power generation are disclosed. Via use of a support vector machine (SVM) enhanced Markov model, short-term wind power generation forecasts may be generated. Exemplary approaches accurately account for wind ramp-up and ramp-down, as well as diurnal non-stationarity and seasonality of wind power generation. Via use of the disclosed forecasting approaches, utilities and grid managers can make improved decisions relating to electrical power generation and transmission, thus reducing costs and reducing pollution.
公开/授权文献
信息查询
IPC分类:
G | 物理 |
G06 | 计算;推算或计数 |
G06N | 基于特定计算模型的计算机系统 |
G06N7/00 | 基于特定数学模式的计算机系统 |