Nested Machine Learning Architecture
Abstract:
In one embodiment, a method includes a preprocessing stage of a neural network model, where the preprocessing stage includes first and second preprocessing modules. Each of the two modules has first input that may receive a dense input and a second input that may receive a sparse input. Each module generates latent vector representations of their respective first and second inputs, and combine the latent vectors with the original first input to define an intermediate output. The intermediate output of the first module is fed into the first input of the second module.
Public/Granted literature
Information query
Patent Agency Ranking
0/0