- 专利标题: DOCUMENT RELEVANCE DETERMINATION FOR A CORPUS
-
申请号: US15794487申请日: 2017-10-26
-
公开(公告)号: US20190130024A1公开(公告)日: 2019-05-02
- 发明人: Steven N. Burchfield , Steven P. Lafalce , Maurice M. Materise , James A. Oconnor
- 申请人: International Business Machines Corporation
- 主分类号: G06F17/30
- IPC分类号: G06F17/30
摘要:
Embodiments of the invention include method, systems and computer program products for using a target similarity calculation to identify relevant content in a corpus of documents or records. The computer-implemented method includes creating, by a processor, a term frequency (TF) list for one or more documents of a corpus. The processor calculates an inverse document frequency (IDF) for each listed term. The processor calculates a TF-IDF for each listed term. The processor determines a similarity ranking for one or more documents of the corpus using a target similarity calculation using the TF-IDF for each listed term.
公开/授权文献
- US10733220B2 Document relevance determination for a corpus 公开/授权日:2020-08-04
信息查询