COMPUTER VISION ARCHITECTURE WITH MACHINE LEARNED IMAGE RECOGNITION MODELS
摘要:
In an example, a first machine learning algorithm is used to train a smart contour model to identify contours of product shapes in input images and to identify backgrounds in the input images. A second machine learning algorithm is used to train a plurality of shape-specific classification models to output identifications of products in input images. A candidate image of one or more products is obtained. The candidate image is passed to the smart contour model, obtaining output of one or more tags identifying product contours in the candidate image. The candidate image and the one or more tags are passed to an ultra-large scale multi-hierarchy classification system to identify one or more classification models for one or more individual product shapes in the candidate image. The one or more classification models are used to distinguish between one or more products and one or more unknown products in the image.
信息查询
0/0